目的 表征30CrMnSiA钢锌镍合金/硬铬复合镀层,并研究其耐蚀、耐磨性能等。方法 在30CrMnSiA钢表面分别制备30 μm硬铬镀层、5 μm锌镍合金+30 μm硬铬复合镀层、10 μm锌镍合金+30 μm硬铬复合镀层,通过对镀层形貌、结合力、显微硬度、摩擦磨损、孔隙率、耐蚀性等的测试分析,综合对比评价3种镀层的性能。结果 复合镀层外观及微观形貌与硬铬镀层基本一致,显微硬度较硬铬镀层有极小幅度的下降,但仍高达800HV0.5以上。锌镍合金镀层的存在一定程度改变了复合镀层的磨损形态,但对磨损量的影响有限。锌镍合金镀层的存在使复合镀层的孔隙率降至0,大幅提高了复合镀层的耐蚀性,锌镍合金镀层的厚度越大,其耐蚀性越好。结论 复合镀层除具有硬铬镀层高硬度、高耐磨等优势外,还兼具了锌镍合金镀层高致密、高耐蚀的特性,具有优异的综合性能及应用前景。
Abstract
The work aims to characterize and study the corrosion and wear resistance of 30CrMnSiA steel zinc nickel alloy/hard chromium composite coatings. 30 μm hard chromium coating, 5 μm zinc nickel alloy+30 μm hard chromium composite coating, and 10 μm zinc nickel alloy+30 μm hard chromium composite coating were prepared on the surface of 30CrMnSiA steel. The performance of the three coatings was comprehensively compared and evaluated by testing and analyzing their microstructure, adhesion, microhardness, wear amount, friction coefficient, porosity, and corrosion resistance. The appearance and microstructure of the composite coating were basically consistent with those of the hard chromium coating, and the microhardness had a slight decrease compared with the hard chromium coating, but still reached over 800HV0.5. The existence of the zinc nickel alloy coating changed the wear morphology of the composite coating to a certain extent, but its impact on the wear amount was limited. The presence of the zinc nickel alloy coating reduced the porosity of the composite coating to 0, greatly improving the corrosion resistance of the composite coating. The thicker the zinc nickel alloy coating, the better its corrosion resistance. Composite coatings not only have the advantages of high hardness and wear resistance of hard chromium coatings, but also possess the characteristics of high density and high corrosion resistance of zinc nickel coatings. They have excellent comprehensive performance and application prospects.
关键词
硬铬镀层 /
锌镍合金镀层 /
复合镀层 /
耐蚀性 /
硬度 /
摩擦磨损
Key words
hard chromium coating /
zinc nickel alloy coating /
composite coating /
corrosion resistance /
hardness /
friction and wear
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ARAUJO L S, DE ALMEIDA L H, DOS SANTOS D S. Hydrogen Embrittlement of a Hard Chromium Plated Cylinder Assembly[J]. Engineering Failure Analysis, 2019, 103: 259-265.
[2] MAGAGNIN L, NOBILI L, CAVALLOTTI P L.Metastable Zinc-Nickel Alloys Deposited from an Alkaline Electrolyte[J]. Journal of Alloys and Compounds, 2014, 615: S444-S447.
[3] 高荣龙, 向可友, 林建华, 等. Zn-Ni合金镀层中添加第三种元素和纳米颗粒的研究新进展[J]. 表面技术, 2018, 47(10): 262-268.
GAO R L, XIANG K Y, LIN J H, et al.Research Progress of Adding Third Element and Nano-Particle into Zn-Ni Alloy Coating[J]. Surface Technology, 2018, 47(10): 262-268.
[4] TSELUIKIN V N, KORESHKOVA A A.Pulsed Electrodeposition of Composite Coatings Based on Zinc-Nickel Alloy[J]. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54(3): 453-456.
[5] FASHU S, KHAN R.Recent Work on Electrochemical Deposition of Zn-Ni (-X) Alloys for Corrosion Protection of Steel[J]. Anti-Corrosion Methods and Materials, 2019, 66(1): 45-60.
[6] 国防科学技术工业委员会. 兵器产品金属电镀层通用规范: WJ 2550—2000[S]. 北京: 中国兵器工业标准化研究所, 2001.
Committee of Science, Technology and Industry for National Defense., Genaral Specification for Metal Electroplated Coatings on Weapons Products: WJ 2550—2000[S]. Beijing: China Ordnance Industry Standardization Research Institute, 2001.
[7] 中国国家标准化管理委员会. 金属和氧化物覆盖层厚度测量显微镜法: GB/T 6462—2005[S]. 北京: 中国标准出版社, 2005.
Standardization Administration.Metallic and Oxide Coatings-Measurement of Coating Thinckness-Microscopical Method: GB/T 6462—2005[S]. Beijing: Standards Press of China, 2005.
[8] 中华人民共和国教育部. 扫描电子显微镜分析方法通则: JY/T 0584—2020[S]. 北京: 中国标准出版社, 2020.
Ministry of Education of the People's Republic of China. Genaral Rules for Analysis Methods of Scanning Electron Microscopy: JY/T 0584—2020[S]. Beijing: Standards Press of China, 2020.
[9] 中国国家标准化管理委员会. 金属基体上的金属覆盖层电沉积和化学沉积层附着强度试验方法评述: GB/T 5270—2005[S]. 北京: 中国标准出版社, 2005.
Standardization Administration.Metallic Coatings on Metallic Substrates-Electrodeposited and Chemically Deposited Coatings-Review of Methods Available for Testing Adhesion: GB/T 5270—2005[S]. Beijing: Standards Press of China, 2005.
[10] 中国国家标准化管理委员会. 金属材料维氏硬度试验第1部分: 试验方法: GB/T 4340.1—2009[S]. 北京: 中国标准出版社, 2009.
Standardization Administration.Metallic Materials Vickers Hardness Test Part 1: Test Method: GB/T 4340.1— 2009[S]. Beijing: Standards Press of China, 2009.
[11] 中国国家标准化管理委员会. 金属覆盖层孔隙率试验铁试剂试验: GB/T 17721—1999[S]. 北京: 中国标准出版社, 1999.
Standardization Administration.Metallic Coatings-Porosity Tests Ferroxyl Test: GB/T 17721—1999[S]. Beijing: Standards Press of China, 1999.
[12] 中国国家标准化管理委员会. 人造气氛腐蚀试验盐雾试验: GB/T 10125—2012[S]. 北京: 中国标准出版社, 2012.
Standardization Administration.Corrosion Tests in Artificial Atmospheres-Salt Spray Tests: GB/T 10125— 2012[S]. Beijing: Standards Press of China, 2012.
[13] 中国国家标准化管理委员会. 金属基体上金属和其他无机覆盖层经腐蚀试验后的试样和试件的评级: GB/T 6461—2002[S]. 北京: 中国标准出版社, 2002.
Standardization Administration.Methods for Corrosion Testing of Metallic and Other Inorganic Coatings on Metallic Substrates-Rating of Test Specimens and Manufactured Articles Subjected to Corrosion Tests: GB/T 6461—2002[S]. Beijing: Standards Press of China, 2002.
[14] 田伟. 锌镍合金电镀工艺及性能研究[D]. 西安: 西北工业大学, 2004.
TIAN W.Study on Electroplating Process and Properties of Zn-Ni Alloy[D]. Xi'an: Northwestern Polytechnical University, 2004.
[15] 屠振密. 电镀合金原理与工艺[M]. 北京: 国防工业出版社, 1993.
TU Z M.Principle and Technology of Electroplating Alloy[M]. Beijing: National Defense Industry Press, 1993.
[16] 孙佳钰, 彭文山. 温度与应力耦合作用下高强钢海水腐蚀行为研究[J]. 装备环境工程, 2024, 21(4): 116-125.
SUN J Y, PENG W S.Seawater Corrosion Behavior of High-Strength Steel under the Coupling Effect of Temperature and Stress[J]. Equipment Environmental Engineering, 2024, 21(4): 116-125.
[17] 陈杨嵋, 贺小燕, 黄谦, 等. 碳钢和不锈钢在海洋SRB、IRB和IOB下的点蚀研究现状[J]. 表面技术, 2024, 53(2): 15-27.
CHEN Y M, HE X Y, HUANG Q, et al.Research Status of Pitting Corrosion of Carbon Steel and Stainless Steel under Marine SRB, IRB and IOB[J]. Surface Technology, 2024, 53(2): 15-27.
[18] 张英, 戴明安. 海水中舰船钢低电位差电偶的腐蚀[J]. 中国腐蚀与防护学报, 1993, 13(1): 86-90.
ZHANG Y, DAI M A.Galvanic Corrosion of ship-Building Steel Couple with Low Potentialdifference in Seawater[J]. Journal of Chinese Society for Corrosion and Protection, 1993, 13(1): 86-90.
[19] 杨世伟, 席慧智, 谢辅洲, 等. 舰船材料的电偶腐蚀研究[J]. 哈尔滨工程大学学报, 2000, 21(6): 34-38.
YANG S W, XI H Z, XIE F Z, et al.Study of Naval Vessel Galvanic Corrosion[J]. Journal of Harbin Engineering University, 2000, 21(6): 34-38.
[20] 周鲁军, 董毅, 杨善武. E550钢埋弧焊接接头在模拟海洋大气环境中的腐蚀行为[J]. 材料热处理学报, 2020, 41(4): 173-180.
ZHOU L J, DONG Y, YANG S W.Corrosion Behavior of Submerged Arc Welded Joint of E550 Steel in Simulated Marine Atmospheric Environment[J]. Transactions of Materials and Heat Treatment, 2020, 41(4): 173-180.
[21] ZHANG Z K, YU Y, ZHANG J F, et al.Corrosion Behavior of Keyhole-Free Friction Stir Spot Welded Joints of Dissimilar 6082 Aluminum Alloy and DP600 Galvanized Steel in 3.5% NaCl Solution[J]. Metals, 2017, 7(9): 338.
[22] SRAVANTHI S S, ACHARYYA S G, PHANI PRABHAKAR K V, et al. Effect of Welding Parameters on the Corrosion Behavior of Dissimilar Alloy Welds of T6 AA6061 Al-Galvanized Mild Steel[J]. Journal of Materials Engineering and Performance, 2018, 27(10): 5518-5531.
[23] SARVGHAD-MOGHADDAM M, PARVIZI R, DAVOODI A, et al.Establishing a Correlation between Interfacial Microstructures and Corrosion Initiation Sites in Al/Cu Joints by SEM-EDS and AFM-SKPFM[J]. Corrosion Science, 2014, 79: 148-158.
[24] AKID R, MILLS D J.A Comparison between Conventional Macroscopic and Novel Microscopic Scanning Electrochemical Methods to Evaluate Galvanic Corrosion[J]. Corrosion Science, 2001, 43(7): 1203-1216.
[25] 林德源. 大气环境条件下电力金属材料的电偶腐蚀研究[J]. 腐蚀科学与防护技术, 2018, 30(2): 113-118.
LIN D Y.Galvanic Corrosion of Electric Metal Materials in Atmospheric Environment[J]. Corrosion Science and Protection Technology, 2018, 30(2): 113-118.